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TECHNICAL PERSPECTIVE #3
SIGNAL TRANSDUCTION AND NON-LINEARITY
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In the sequence of events which may lead from field exposure to biological effects, the
biophysical transduction process plays the crucial role.  Actually, there must be two distinct steps
to this process. First, there has to be a physical interaction mechanism in which the fields affect a
chemical process. Then there must be an amplification of the effect by biological means. 
Because of the extremely low energies involved, we have to assume that the transduction
involves non-equilibrium states and that the dynamics is non-linear.

Linear dynamics is ubiquitous in physics. Newton's equations, Maxwell’s and Schroedinger’s
equations are all linear.  They are immensely successful in describing reality, but they are
essentially equations of forces in vacuum.  As soon as things get more complex, in any
qualitative phenomenon, such as the transition from laminar to turbulent flow, or in phase
changes from gas to liquid to solid, non-linearity becomes crucial.

Even the classic many-body problem is inherently non-linear. For example, the solar system,
apparently such a model of deterministic clockwork, is actually chaotic.  Uncertainty of a mere
kilometer in position grows to a distance equal to the radius of the earth's orbit in 100 million
years. Going backwards in time, only half way through the Cretaceous, the relative position of
the planets becomes unpredictable and, as a result, so is the occurrence of ice ages on earth.

Linear dynamics is incapable of describing qualitative changes. Whenever there are phase
changes, whenever structure arises, non-linear dynamics is responsible.  Biology is notoriously
non-linear. The very fact that biological phenomena are successfully described in qualitative
terms indicates this.  If it were not for non-linearity, we would all be quivering jellies.

Because many of us have very little familiarity with non-linear equations, let us look at the most
simple instance of such a dynamical relationship.  We do this purely as an example, to gain some
insight into the qualitative features which could be expected. There are no pretentions that this
model describes any specific biological feature. 

The linear difference equation

xn+1 = R*xn 

describes the exponential growth of a population of cells or the monthly increase of your bank
account (with constant interest rate and no withdrawals, of course).  But cell populations don't
actually grow indefinitely.  A more realistic equation, which takes into account the finite
resources available is given by  
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xn+1 = R*xn*(1-xn)

This is a simple quadratic difference equation, which appears not too different from its linear
counterpart. We observe that for R between 0 and 4 the value of x will stay finite, no matter how
many iterations we make. Let's consider the limiting value of x as a 'function' of the parameter R,
say F(R). We will see that F(R) shows an astonishing amount of structure.

To begin, the function F(R) is quite well behaved.  Up until a threshold of R=0.5 it is equal to
zero.  After that it rises monotonically until R=3.  This is a good classical function, quite similar,
for example, to a dose-response function with a threshold value.  In fact, an analytical expression
can easily be given.

At R=3 something interesting happens: the function splits in two.  Soon after it bifurcates again.
And again, and again.  Until it becomes a tangle of infinite ramifications.  The simple function
has become a fractal. 



RAPID PROGRAM/TECHNICAL PERSPECTIVES

1-18

Many biological structures follow a fractal pattern:  the branchings of a tree from a central trunk
and the dendritic configuration of a root system, the sequence of bronchial ducts and the flow of
blood through smaller and smaller arteries and capillaries. 

But such multivariate functions also illustrate another biological feature: the existence of stable
states. There are limit cycles, sometimes several of them, which draw dynamical variables to
themselves regardless of initial conditions.  These limit cycles thus represent states of
homeostatic equilibrium.  Linear dynamics is incapable of describing such intrinsically
biological characteristics.

The fractal range of F(R) eventually culminates in yet another qualitatively distinct realm.  Chaos
breaks out.  For larger values of R there is no defined solution F(R).  Instead, values fluctuate
between given upper and lower limits in a way that appears random, though it is strictly
deterministic.  Unlike the linear case, however, initially small errors will grow indefinitely so
that after a number of cycles the result becomes unpredictable. 

The chaotic realm is by no means featureless.  Throughout, there are windows where there are
stable solutions with only a few values. Some of these windows are quite wide, but others are
narrow and resonance-like.
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We have considered the quadratic difference equation merely to gain insight into the qualitative
characteristics of nonlinear dynamic relationships.  We have found a range of features evocative
of biologic systems.  If such relationships lie at the heart of the interaction between fields and
biological systems, and it is difficult to imagine that they are not, then it should not be surprising
if we find dose-effect relationships that do not entirely conform to the linear preconceptions.


